

OpenFOAMにおけ る混相流計算

2013/1/19 大阪大学大学院基礎工学研究科 岡野研 M1 山本 卓也

混相流とは

混相流・・・複数の相が混ざり合う流れ

例)気液二相流(空気-水)

液液二相流(水-油)

固液二相流(粒子-水)

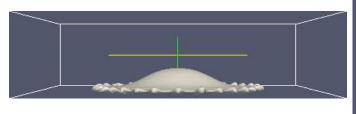
キャビテーション、気泡塔

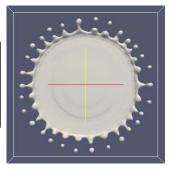
有機溶媒と水の混合溶液

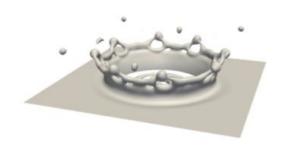
懸濁液

工業的に重要であることが多い

混相流例







横井,数値流体シンポジウム,2012,C03-4

富原ら,数値流体シンポジウム,2011,C04-3

様々な数値計算法が存在する

混相流の数値計算法

混相流のシミュレーションを分類すると以下の通りになる

- メッシュフリー法
- 界面捕獲法 (Interface Tracking)
- 界面追跡法 (Interface Capturing)
- 平均化(二流体)モデル

メッシュフリー法

粒子法(MPS, SPH)

• 界面捕獲法

VOF法

Level-Set法

Phase Field法

• 界面追跡法

BFC(界面適合座標)

ALE(Arbitrary Lagrangian-Eulerian)

それぞれの手法の特徴

• メッシュフリー法

微小の粒子の運動で表現する メッシュ分割が不必要 衝撃波等の不連続場の扱いが容易 大変形、歪みに対して精度保持 精度が悪い 計算時間多大

• **界面捕獲法** 計算格子を移動せずに計算する 手法によって異なるが界面がなまる

• 界面追跡法

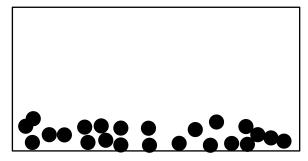
計算格子を時々刻々と移動する

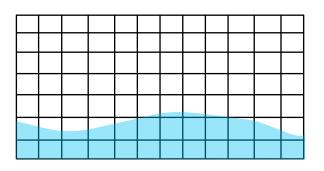
精度がかなり高い

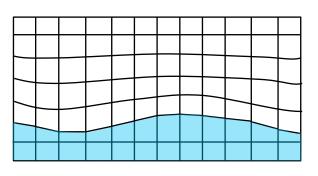
計算が破綻しやすい

砕波現象等の大変形をするものに不向き

概念図







OpenFOAMにおける実装

- メッシュフリー法
- ?粒子法(MPS, SPH)
- ・ 界面捕獲法
- OVOF法
- ×Level-Set法
- ×Phase Field法
- ×(Front tracking法)
- 界面追跡法
- △BFC(界面適合座標)
- ? ALE(Arbitrary Lagrangian-Eulerian)

混相流のコードが少ない ほとんどVOF法を少し変え たもの(interFoam系)

そこで皆さん

一緒にコード開発しませんか??

VOF(Volume of Fluid)法

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = \sigma k n \delta_{s}$$

k: 界面の曲率

連続式

$$\nabla \cdot \mathbf{v} = 0$$

流体率

の移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) = 0$$

 $\alpha = 1$:: liquid phase

 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

- VOF法の欠点界面の形状が明確に定義されない
- VOF法の長所 境界面の複雑な変形を伴う現象 をシミュレート可能 アルゴリズムが単純

現在の研究ではVOF法を解くの みの研究は少ない

VOF法と様々なものを組み合わせ てシミュレーション

OpenFOAMにおけるVOF法の 実装

InterFoam VOF法のみ

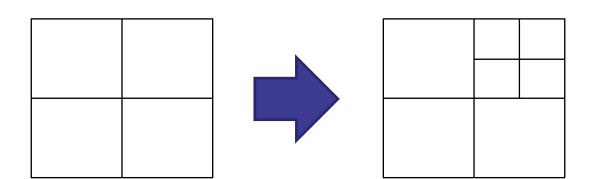
InterDymFoam VOF法十AMR

InterMixingFoam VOF法(3つの流体の混合)

...

OpenFOAMではAMRを用いることによりVOF法の誤差を低減

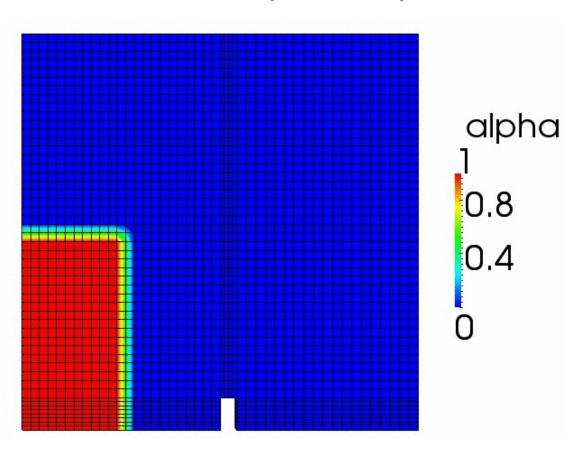
AMR(Adaptive Mesh Refinement) 局所格子分割するライブラリ

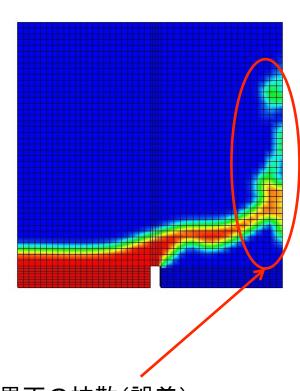


界面近傍で 局所格子分割

VOF法(InterFoam)

Dam Break (Tutorial)

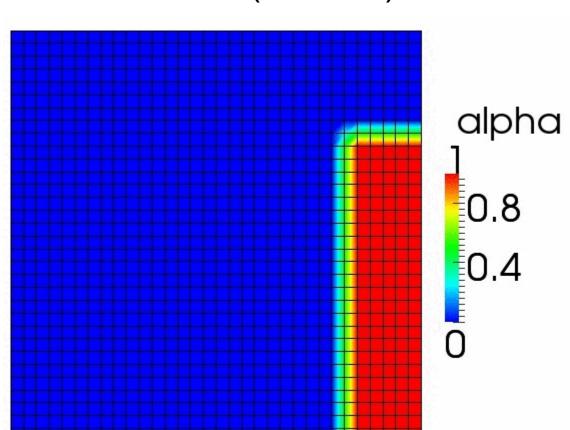


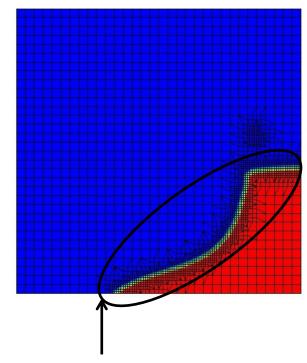


界面の拡散(誤差) VOF法のみでは誤差が大きい

VOF法+AMR(InterDymFoam)

Dam Break (Tutorial)





格子局所分割を行っている 格子分割のおかげで界面の拡 散(誤差)が低下

VOF法の精度改善方法

<u>VOF法</u>

VOF法 + AMR CLSVOF法 VOF/PLIC法 VOF(THINC/WLIC)法

数値スキーム CIP法 WENO法 界面再構築のアルゴリズム PLIC (Piesewise Linear Interface Calculation) SLIC (Simple Line Interface Calculation) WLIC (Weighted Line Interface Calculation)

様々なものが存在

CLSVOF法のOpenFOAMに対する 実装を目指す

VOF法のコード解読から始める

Ver. 1.6.x

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = \sigma k n \delta_{s}$$

流体率なの移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) = 0$$

 $\alpha = 1$:: liquid phase

 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

$$\frac{\rho = \alpha \rho_g + (1 - \alpha)\rho_l}{\mu = \alpha \mu_g + (1 - \alpha)\mu_l}$$

```
\rho = \alpha \rho_g + (1 - \alpha) \rho_l
   createFields.Hの中
// Need to store rho for ddt(rho, U)
  volScalarField rho
     IOobject
        "rho",
        runTime.timeName(),
        mesh,
        IOobject::READ_IF_PRESENT
     alpha1*rho1 + (scalar(1) - alpha1)*rho2,
     alpha1.boundaryField().types()
```


Ver. 1.6.x

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = \sigma k n \delta_{s}$$

流体率なの移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) = 0$$

 $\alpha = 1$:: liquid phase

 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

$$\frac{\rho = \alpha \rho_g + (1 - \alpha) \rho_l}{}$$

$$\mu = \alpha \mu_g + (1 - \alpha) \mu_l$$

```
\mu = \alpha \mu_g + (1 - \alpha) \mu_l
```

/src/transportModels/incompressible/incompressibleTwoPhaseMixture/twoPhaseMixture.C
118行目

Ver. 1.6.x

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = \sigma k n \delta_{s}$$

流体率なの移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) = 0$$

 $\alpha = 1$:: liquid phase

 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

$$\frac{\rho = \alpha \rho_g + (1 - \alpha)\rho_l}{\mu = \alpha \mu_g + (1 - \alpha)\mu_l}$$

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) = 0$$

液相領域
$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v_l) = 0$$

気相領域
$$\frac{\partial \alpha}{\partial t} + \nabla \cdot ((1 - \alpha)v_g) = 0$$

小文字I,gはそれぞれ液相、気相を表す。

再定義

$$\mathbf{v} = \alpha \mathbf{v}_l + (1 - \alpha) \mathbf{v}_g$$

$$\mathbf{v}_r = \mathbf{v}_l - \mathbf{v}_g$$

v_r: 相関速度

Ver. 1.6.x

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = \sigma k n \delta_{s}$$

流体率なの移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \mathbf{v}) = 0$$

 $\alpha = 1$:: liquid phase

 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

$$\frac{\rho = \alpha \rho_g + (1 - \alpha)\rho_l}{\mu = \alpha \mu_g + (1 - \alpha)\mu_l}$$

最終形

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) + \nabla \cdot ((1 - \alpha)\alpha v_r) = 0$$

alphaEqn.H中で設定

α式の設定については後に説明

Ver. 1.6.x

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = \sigma k n \delta_{s}$$

流体率なの移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) = 0$$

 $\alpha = 1$:: liquid phase

 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

$$\frac{\rho = \alpha \rho_g + (1 - \alpha)\rho_l}{\mu = \alpha \mu_g + (1 - \alpha)\mu_l}$$

表面張力モデルCSFモデル

(Brackbill (1992)) (Continuum Surface Force)

$$F_{\sigma} = \sigma k n \delta_{s}$$

 σ : 表面張力

k: 曲率

n: 法線ベクトル

 $\delta_{\rm c}$: δ 関数

<u>表面張力</u>

面積力

(面にかかる力)

体積力 体積にかかる力

Ver. 1.6.x

支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g} \quad 19$$
行目

$F_{\sigma} = \sigma k n \delta_{s}$

流体率なの移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) = 0$$

 $\alpha = 1$:: liquid phase

 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

$$\frac{\rho = \alpha \rho_g + (1 - \alpha)\rho_l}{\mu = \alpha \mu_g + (1 - \alpha)\mu_l}$$

```
F_{\sigma} = Okn\delta_{s}
```

Uegn.H中

```
if (momentumPredictor)
     solve
                           sigmaK()とは??
       UEqn
       fvc::reconstruct
          fvc::interpolate(rho)*(g & mesh.Sf())
             fvc::interpolate(interface.sigmaK())*fvc::snGrad(alpha1)
           - fvc::snGrad(p)
          ) * mesh.magSf()
                               snGrad(alpha1)とは??
```


Ver. 1.6.x

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = okn \delta_s$$

流体率 α の移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha \mathbf{v}) = 0$$

 $\alpha = 1$:: liquid phase

 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

$$\frac{\rho = \alpha \rho_g + (1 - \alpha)\rho_l}{\mu = \alpha \mu_g + (1 - \alpha)\mu_l}$$

```
sigmaK()とは??
interfaceProperties.H 中
140行目
tmp<volScalarField> sigmaK() const
         return sigma *K;
 sigma_ :surface tension
          :curvature
sigmaK()
F_{\sigma} = \sigma k n \delta_{s}
```


Ver. 1.6.x

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = \sigma k n \delta_{s}$$

流体率なの移流方程式

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) = 0$$

 $\alpha = 1$:: liquid phase

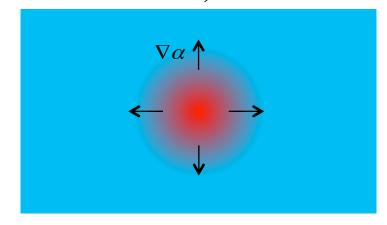
 $0 < \alpha < 1$:: interface

 $\alpha = 0$:: gas phase

 $\frac{\rho = \alpha \rho_g + (1 - \alpha)\rho_l}{\mu = \alpha \mu_g + (1 - \alpha)\mu_l}$

snGrad(alpha1)とは?? プログラマズガイドより 面に垂直な勾配の単位ベクトルを表す。

 α 場(赤:流体,青:気体)



$$\boldsymbol{n} = \frac{\nabla \alpha}{|\nabla \alpha|}$$

Ver. 1.6.x

α式の設定

最終形 (微分形)

$$\frac{\partial \alpha}{\partial t} + \nabla \cdot (\alpha v) + \nabla \cdot ((1 - \alpha)\alpha v_r) = 0$$

有限体積法なので 積分系に変換

ガウスの発散定理

$$\int_{S} \mathbf{n} \cdot \mathbf{a} dS = \int_{V} \nabla \cdot \mathbf{a} dV$$

<u>積分系</u>

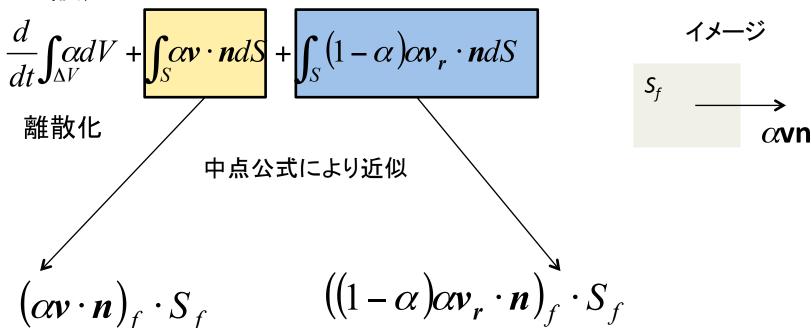
$$\frac{d}{dt} \int_{\Delta V} \alpha dV + \int_{\Delta V} \nabla \cdot (\alpha v) dV + \int_{\Delta V} \nabla \cdot ((1 - \alpha)\alpha v_r) dV = 0$$

$$\frac{d}{dt} \int_{\Delta V} \alpha dV + \int_{S} \alpha v \cdot n dS + \int_{S} (1 - \alpha) \alpha v_{r} \cdot n dS$$

Ver. 1.6.x

非定常項はとりあえず無視して

α式の設定



ここで、fはセル界面上を表す。 S_f は表面積

これがOpenFOAMにどう組 み込まれているか??

Ver. 1.6.x

alphaEqn.H 中 5~8行目

surfaceScalarField phic = mag(phi/mesh.magSf()); phic = min(interface.cAlpha()*phic, max(phic)); surfaceScalarField phir = phic*interface.nHatf();

プログラム上では

それぞれ 代入

$$\phi_c = \frac{\phi}{S_{ef}}$$

$$\phi_c = \min(C_\alpha \times \phi_c, \max(\phi_c))$$

$$\phi_r = \phi_c \times n_f$$

 $\phi_r = n_f \min \left| C_{\alpha} \frac{\phi}{S_f}, \max \left(\frac{\phi}{S_f} \right) \right|$

$$((1-\alpha)\alpha v_r \cdot n)_f \cdot S_f$$

Ver. 1.6.x

<u>alphaEqn.H 中</u> 5~8行目

```
surfaceScalarField phic = mag(phi/mesh.magSf());
phic = min(<u>interface.cAlpha()</u>*phic, max(phic));
surfaceScalarField phir = phic*<u>interface.nHatf()</u>;
find, grepでソース(src)内検索
```

src/transportModels/interfaceProperties/interfaceProperties.C 中

cAlpha, nHatf_, K_等の設定

Ver. 1.6.x

<u>src/transportModels/interfaceProperties/interfaceProperties.C</u> 中

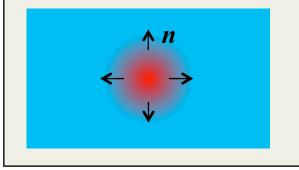
117行目

```
// Face unit interface normal flux
                                            n_f = n_{fv} \cdot S_f
   nHatf = <a href="mailto:nHatfv">nHatfv</a> & Sf;
131行目
                                            k = \nabla \cdot n_f
// Simple expression for curvature
   K = -fvc::div(nHatf );
146行目
 transportPropertiesDict (dict),
   cAlpha
                                                 C_{\alpha}の読み込み
       readScalar
alpha1.mesh().solutionDict().subDict("PISO").lookup("cAlpha
```

表面張力モデルCSFモデル (Brackbill (1992)) (Continuum Surface Force)

$$F_{\sigma} = \sigma k n$$

$$k = \nabla \cdot n$$



Ver. 1.6.x

<u>src/transportModels/interfaceProperties/interfaceProperties.C</u> 中

113行目

```
// Face unit interface normal surfaceVectorField nHatfv = gradAlphaf/ n_{fv} = \frac{(\nabla \cdot \alpha)_f}{|(\nabla \cdot \alpha)_f| + \delta_N|} 156行目 deltaN_ ("deltaN", 1e-8/pow(average(alpha1.mesh().V()), 1.0/3.0) \delta_N = \frac{1.0e^{-8}}{(\sum V_i/N)^{1/3}}
```


個人的に物理的意味はまだ分かっていない。

Ver. 1.6.x

<u>alphaEqn.H 中</u> 5~8行目

surfaceScalarField phic = mag(phi/mesh.magSf());
phic = min(interface.cAlpha()*phic, max(phic));
surfaceScalarField phir = phic*interface.nHatf();

最初の推測

$$\phi_r = n_f \min \left[C_\alpha \frac{\phi}{s_f}, \max \left(\frac{\phi}{s_f} \right) \right]$$

文字から判断すると??

$$((1-\alpha)\alpha v_r \cdot n)_f \cdot S_f$$

なんとなく それっぽいという所までの理解

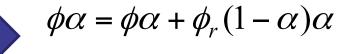
Ver. 1.6.x

<u>alphaEqn.H 中</u> 9行目~

```
for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
      surfaceScalarField phiAlpha =
         fvc::flux
            phi,
                                      \phi\alpha
            alpha1,
            alphaScheme
       + fvc::flux
            -fvc::flux(-phir, scalar(1) - alpha1,
alpharScheme),
                                 \phi_r(1-\alpha)\alpha
            alpha1,
            alpharScheme
         );
      MULES::explicitSolve(alpha1, phi, phiAlpha, 1, 0);
      rhoPhi = phiAlpha*(rho1 - rho2) + phi*rho2;
```

<u>Fvc::flux 流束を返す。</u>

/src/finiteVolume/finiteVolume/fvc/fvcFlux.c中

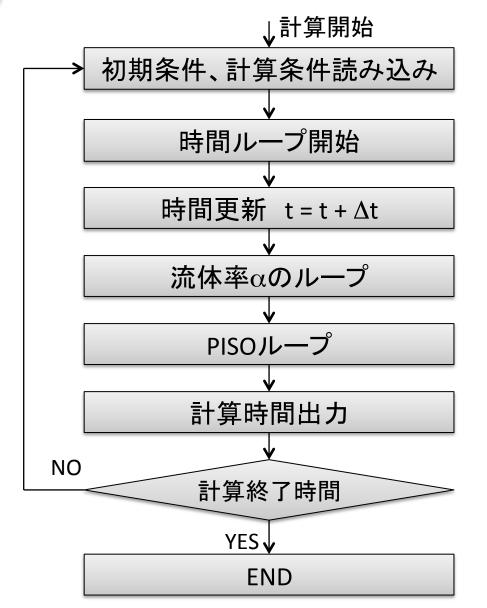


MULES(Multidimensional Universal Limiter for Explicit Solution)??

Ver. 1.6.x

$$\phi \alpha = \phi \alpha + \phi_r (1 - \alpha) \alpha$$
 $\phi_r = n_f \min \left[C_\alpha \frac{\phi}{s_f}, \max \left(\frac{\phi}{s_f} \right) \right]$ $\phi = \mathbf{v} \cdot S_f$ ではないかと推 測できる

InterFoamのアルゴリズム



InterFoam.C より

CLSVOF法

CLSVOF(Conjugate Level-Set and Volume Of Fluid)

• 支配方程式

Navier-Stokes 式

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla P + \mathbf{v} \nabla^2 \mathbf{v} + \mathbf{F}_{\sigma} + \rho \mathbf{g}$$

$$F_{\sigma} = \sigma k n \delta_{s}$$

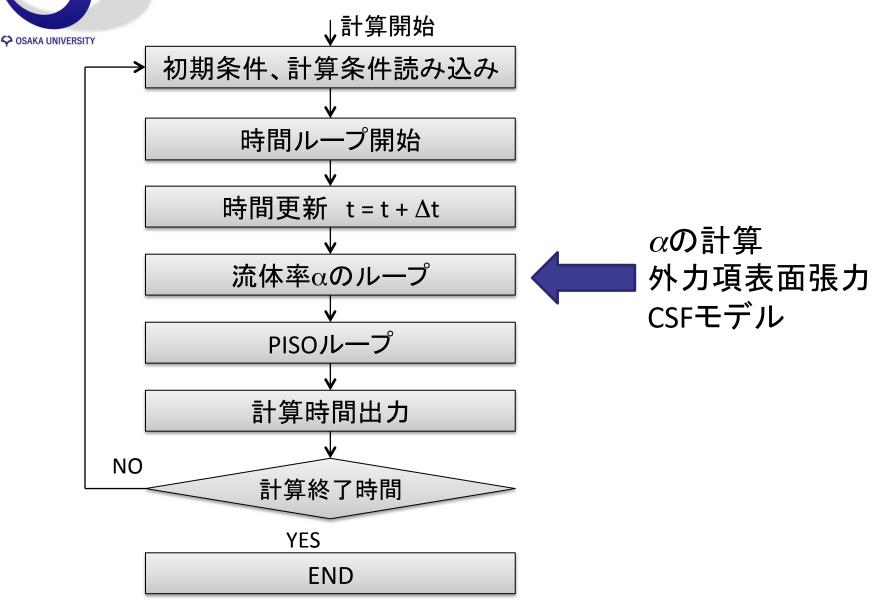
k; 曲率

$$k = \nabla \cdot \boldsymbol{n}$$

曲率等の計算を流体率αを用いて計算する

Level-Set関数を用いて曲率等の計算

CLSVOF法のために変えるところ



最後に

もう少し進捗する予定でしたがあまり進みませんでした。 すみませんでした。

現在はOpenFOAMの開発は趣味でやっています。

もう一度言いますが、

どなたか一緒に

OpenFOAMで様々なコード開発に挑戦しませんか??

特に混相流領域