Introduction of AdjointShapeOptimizationFoam

Y. Takagi

November 10, 2012, OF b.@Kansai
Brief history of adjoint method

- 1969 Lions
 - Optimal control of systems governed by partial differential equations
- 1974 Pironneau
 - On optimum design in fluid mechanics
- 1988 Jameson
 - Aerodynamics design via control theory
- 1997 Giles, Pierce
 - Adjoint equations in CFD: duality, boundary conditions and solution behavior
Brief history of adjoint method

• 1997 Anderson, Venkatakrishnan
 – Aerodynamics design optimization on unstructured grids with a continuous adjoint formulation
• 2003 Borrvall, Peterson
 – Topology optimization of fluids in Stokes flow
• 2007 Othmer, Villiers, Weller
 – Implementation of a continuous adjoint for topology optimization of ducted flows
• 2008 Othmer
 – A continuous adjoint formulation for the computation of topological and surface sensitivities of ducted flows
Formulation of adjoint method

Formulation of adjoint method

• Optimization problem

Minimize $J = J(\alpha, v, p)$ subject to $R(\alpha, v, p) = 0$

where

J : cost function

α : porosity

v : velocity

p : pressure
State equations

Incompressible, steady-state Navier-Stokes equations with porosity

\[(R_1, R_2, R_3)^T = (v \cdot \nabla)v + \nabla p - \nabla \cdot (2vD(v)) + \alpha v\]

\[R_4 = -\nabla \cdot v\]

where \(R\) is the state equations,

\[R = (R_1, R_2, R_3, R_4)^T\]

Introduce a Lagrangian function \(L\),

\[L := J + \int_\Omega (u,q)Rd\Omega\]

\[(u,q) = (u_1, u_2, u_3, q)\] (Lagrangian multipliers)
Variation of Lagrangian function

Total variation of L,

$$ \delta L = \delta_\alpha L + \delta_v L + \delta_p L \quad (\text{Lagrangian multipliers are chosen to satisfy } \delta_v L + \delta_p L = 0) $$

$$ = \delta_\alpha L = \delta_\alpha J + \int_\Omega (u,q) \delta_\alpha R d\Omega $$

Then,

$$ \frac{\partial L}{\partial \alpha_i} = \frac{\partial J}{\partial \alpha_i} + \int_\Omega (u,q) \frac{\partial R}{\partial \alpha_i} d\Omega $$

Without explicit dependence of the cost function on the porosity,

$$ \frac{\partial J}{\partial \alpha_i} = 0 $$
Sensitivity

By considering the Darcy term in cell i,

$$\frac{\partial R}{\partial \alpha_i} = \begin{pmatrix} v \\ 0 \end{pmatrix} \chi_i$$

Therefore, the desired sensitivity for each cell can be computed by

$$\frac{\partial L}{\partial \alpha_i} = u_i \cdot v_i V_i$$
Deviation of adjoint equations and boundary conditions

Decompose the cost function J into contributions from the boundary Γ and from the interior of Ω,

$$J = \int_{\Gamma} J_{\Gamma} d\Gamma + \int_{\Omega} J_{\Omega} d\Omega$$

\[\text{\ldots (omitted)}\]

Finally, the adjoint Navier-Stokes equations are derived as follows:

$$-2D(u)v = -\nabla q + \nabla \cdot (2\nu D(u)) - \alpha u - \frac{\partial J_{\Omega}}{\partial v}$$

$$\nabla \cdot u = \frac{\partial J_{\Omega}}{\partial p}$$
Specialization to ducted flows

• Adjoint N-S equations:

\[-2D(u)v = -\nabla q + \nabla \cdot (2\nu D(u)) - \alpha u\]
\[\nabla \cdot u = 0\]

• Adjoint BCs for the wall and inlet:

\[u_t = 0, \quad u_n = -\frac{\partial J_G}{\partial p}\]
\[n \cdot \nabla q = 0\]

• Adjoint BCs for the outlet:

\[q = u \cdot v + u_n v_n + \nu (n \cdot \nabla) u_n + \frac{\partial J_G}{\partial n_n}\]
\[0 = v_n u_t + \nu (n \cdot \nabla) u_t + \frac{\partial J_G}{\partial n_t}\]
Example 1: Dissipated power

Cost function:

\[J := - \int_{\Gamma} d\Gamma \left(p + \frac{1}{2} v^2 \right) v \cdot n \]

\[J_{\Omega} = 0, \quad J_{\Gamma} = - \left(p + \frac{1}{2} v^2 \right) v \cdot n \]

Derivatives for BCs:

\[\frac{\partial J_{\Gamma}}{\partial p} = - v \cdot n, \]

\[\frac{\partial J_{\Gamma}}{\partial v} = - \left(p + \frac{1}{2} v^2 \right) n - (v \cdot n) v \]

Adjoint BCs for the wall and inlet:

\[\mathbf{u}_t = 0 \quad \text{at wall} \]

\[\mathbf{u}_n = \begin{cases} 0 & \text{at inlet} \\ v_n & \end{cases} \]

Adjoint BCs for the outlet:

\[q = \mathbf{u} \cdot \mathbf{v} + u_n v_n + \nu (\mathbf{n} \cdot \nabla) u_n - \frac{1}{2} v^2 - v_n^2 \]

\[0 = v_n (\mathbf{u}_t - \mathbf{v}_t) + \nu (\mathbf{n} \cdot \nabla) \mathbf{u}_t \]
adjointShapeOptimization.C

laminarTransport.lookup("lambda") >> lambda;
alpha +=
 mesh.relaxationFactor("alpha")
 (min(max(alpha + lambda(Ua & U), zeroAlpha), alphaMax) - alpha);

zeroCells(alpha, inletCells);

// Pressure-velocity SIMPLE corrector
{
 // Momentum predictor
 tmp<fvVectorMatrix> UEqn
 (fvm::div(phi, U)
 + turbulence->divDevReff(U)
 + fvm::Sp(alpha, U)
 + alpha * U);

// Adjoint Pressure-velocity SIMPLE corrector
{
 // Adjoint Momentum predictor

 volVectorField adjointTransposeConvection((fvc::grad(Ua) & U));

 zeroCells(adjointTransposeConvection, inletCells);

 tmp<fvVectorMatrix> UaEqn
 (
 fvm::div(-phi, Ua)
 - adjointTransposeConvection
 + turbulence->divDevReff(Ua)
 + fvm::Sp(alpha, Ua)
);

 \[\n \n \]
void Foam::adjointOutletVelocityFvPatchVectorField::updateCoeffs()
{
 if (updated())
 {
 return;
 }

 const fvsPatchField<scalar>& phiap = patch().lookupPatchField<surfaceScalarField, scalar>("phia");

 const fvPatchField<vector>& Up = patch().lookupPatchField<volVectorField, vector>("U");

 scalarField Un(mag(patch().nf() & Up));
 vectorField UtHat((Up - patch().nf()*Un)/(Un + SMALL));

 vectorField Uan(patch().nf()*(patch().nf() & patchInternalField()));

 vectorField::operator=(phiap*patch().Sf()/sqr(patch().magSf()) + UtHat);

 fixedValueFvPatchVectorField::updateCoeffs();
}
void Foam::adjointOutletPressureFvPatchScalarField::updateCoeffs()
{
 if (updated())
 {
 return;
 }

 const fvsPatchField<scalar>& phip = patch().lookupPatchField<surfaceScalarField, scalar>("phi");

 const fvsPatchField<scalar>& phiap = patch().lookupPatchField<surfaceScalarField, scalar>("phia");

 const fvPatchField<vector>& Up = patch().lookupPatchField<volVectorField, vector>("U");

 const fvPatchField<vector>& Uap = patch().lookupPatchField<volVectorField, vector>("Ua");

 operator==((phiap/patch().magSf() - 1.0)*phip/patch().magSf() + (Up & Uap));

 fixedValueFvPatchScalarField::updateCoeffs();
}
Results: adjoint velocity
Result: adjoint pressure
Future work

• Implementation of sensitivity
• BCs for other examples
• Thermal convection problem

• Efficient optimization algorithms to deal with the computed topological and surface sensitivity maps
• Shape update algorithms to translate the shape sensitivities into a new and smooth shape