OpenFOAMを用いた hydrothermal wave現象についての数値解析

2012/03/03 大阪大学 基礎工学部 化学応用科学科 化学工学コース4年 二星 陽帥

Introduction

- Hydrothermal wave (HTW) is observed at the final stage of Czochralski process.
 - Marangoni convection
 - Unsteady thermocapillary flow

Numerical conditions

Governing equations

Continuty:	$ abla \cdot \mathbf{v} = 0$
Navier-Stokes:	$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \mathbf{v} + \mathbf{F}$
Energy:	$\frac{\partial T}{\partial t} + \mathbf{v} \nabla T = \alpha \nabla^2 T$
Induced equation:	$\frac{\partial \boldsymbol{B}}{\partial t} = \frac{1}{\sigma \mu} \nabla^2 \mathbf{B} + \nabla \times (\mathbf{v} \times \mathbf{B})$
Lorentz Force:	$\mathbf{F} = \frac{1}{\mu} (\nabla \times \mathbf{B}) \times \mathbf{B}$

Parameters

Parameter	Value	
Marangoni number (<i>Ma</i>)	2.91×10^{3}	
Prandtl number (Pr)	1.09×10^{-2}	
Rayleigh number	O(No gravity condition)	
Magnetic flux density (B_0)	0, 39.5, 52.6, 132 mT	
Hartmann number (<i>Ha</i>)	0, 7.5, 10, 25	
Rotation speed (ω)	0, 1/60, 2/60, 5/60 s ⁻¹	
Rotational Reynolds number (Re_{ω})	0, 464, 927, 2318	

 Changing "icoFoam" solver to consider the effect of temperature and magnetic flux.

Numerical scheme

- Finite volume method
- PISO algorithm

Assumption

- No gravity condition
- Physical properties of silicon melt

Boundary condition

- No-Slip (wall, bottom)
- Free surface (top)

Discretization

- Quick (divSchemes)
- Linear (Others)

Numerical results without external force

Temperature fluctuation in t = 0 - 150 s

at Ha = 0 and $\omega = 0$ s⁻¹.

Velocity vector at t = 150 s at Ha = 0 and $\omega = 0$ s⁻¹, (a) d = 3 cm (b) d = 1.5 cm.

Effect of crucible rotation or magnetic field

Effect of crucible rotation or magnetic field

Applying rotation and magnetic field simultaneously

Total force both Lorentz and centrifugal force

Conditions	Lorentz force [10 ⁻⁴ N]	Centrifugal force [10 ⁻⁴ N]	Total [10 ⁻⁴ N]	Results
<i>Ha</i> = 7.5	1.412	0	1.412	HTW
<i>Ha</i> = 10	2.124	0	2.124	2D flow
<i>ω</i> = 5/60 s ⁻¹	0	5.297	5.297	HTW
<i>Ha</i> = 7.5, ω = 1/60 s ⁻¹	1.416	0.212	1.628	HTW
$Ha = 7.5, \ \omega = 2/60 \ s^{-1}$	1.419	0.848	2.267	2D flow

Mechanism of HTW

M. K. Smith, *Phys. Fluids*, **29**, 3182-3186 (1986).

Applying crucible rotation or magnetic fields only

Difficult to observation by crucible rotation

Effect of magnetic fields Induced T_{h} Velocity [m/s] current [A/m²] 0.04 750 T_{c} 0.0 0.0 Temperature Lorentz [N/m³] T_{h} gradient [K/m] _1500 30 Lorentz force T_c В F 0.0 300 Lorentz force appeared Marangoni effect $\mu \frac{\partial \mathbf{v}}{\partial \mathbf{n}} = \sigma_T \nabla T$ at inner area on the surface.

Alternative effect of crucible rotation and magnetic field

Conclusion

Magnetic field

- Magnetic field causes Lorentz force on the inner side.
 - More effective than crucible rotation only
 - Depends on Marangoni effect

Crucible rotation

- Crucible rotation causes centrifugal force on the outer side.
 - Difficult to control HTW because of weak force on the inner side

Effective control is available on HTW

by applying crucible rotation and magnetic field

Objective

Understanding of alternative effect of *Crucible rotation* and *Magnetic field* on HTW