オープンCAE勉強会(気泡塔計算)

大阪大学大学院基礎工学研究科 高木 洋平 2013年8月3日

Jet/plume flow

 S. A. Socolofsky, A. Leos-Urbel, E. E. Adams, "Draft Final Report: exploratory experiments with droplet plumes in a cross-flow", Final Report: Experimental Study of Multi-phase Plumes with Application to Deep Ocean Oil Spills. U. S. Department of the Interior Mineral Management Service Contract No. 1435-01-98-CT-30964.

Socolofsky et al. (1999)

Gas and oil plumes in a cross-flow

Property	Value
Oil flow rate [ml/min]	250, 600, 1000
Air flow rate [ml/min]	250, 600, 1000, 2500
Oil density [g/cc]	0.87
Cross-flow speed [m/s]	0, 2, 5, 10

Figure 1: The experimental flume at Parsons Laboratory, MIT. Distance between successive flanges is 1.5 m.

Chen & Yapa (2004)

Fig. 2. Multi-phase plume in cross-flow for case S1: numerical simulation-present model; experimental data from Socolofsky et al. (1999).

Fig. 3. Video image for case S1 (experiment no. C15, Socolofsky et al., 1999).

Multiphase flow simulation in OpenFOAM

- Governing equations used in bubbleFoam solver
 - Continuity equations for each phase ϕ

$$\frac{\partial}{\partial t} \left(\alpha_{\varphi} \rho_{\varphi} \right) + \nabla \cdot \left(\alpha_{\varphi} \rho_{\varphi} \mathbf{U}_{\varphi} \right) = 0$$

Phase momentum equation

$$\frac{\partial}{\partial t} \left(\alpha_{\varphi} \rho_{\varphi} \mathbf{U}_{\varphi} \right) + \nabla \cdot \left(\alpha_{\varphi} \rho_{\varphi} \mathbf{U}_{\varphi} \mathbf{U}_{\varphi} \right) + \nabla \cdot \alpha_{\varphi} \tau_{\varphi} + \nabla \cdot \left(\alpha_{\varphi} \mathbf{R}_{\varphi} \right) = -\alpha_{\varphi} \nabla p + \alpha_{\varphi} \rho_{\varphi} \mathbf{g} + \mathbf{M}_{\varphi}$$

Laminar stress tensor

$$\tau_{\varphi} = -\rho_{\varphi} \mathbf{v}_{\varphi} \left[\nabla \mathbf{U}_{\varphi} + \nabla^{\mathrm{T}} \mathbf{U}_{\varphi} \right] + \frac{2}{3} \rho_{\varphi} \mathbf{v}_{\varphi} \left(\nabla \cdot \mathbf{U}_{\varphi} \right) \mathbf{I}$$

Reynolds stress tensor

$$\mathbf{R}_{\varphi} = -\rho_{\varphi} \mathbf{v}_{\varphi,t} \left[\nabla \mathbf{U}_{\varphi} + \nabla^{\mathrm{T}} \mathbf{U}_{\varphi} \right] + \frac{2}{3} \rho_{\varphi} \mathbf{v}_{\varphi,t} \left(\nabla \cdot \mathbf{U}_{\varphi} \right) \mathbf{I} + \frac{2}{3} \rho_{\varphi} \kappa_{\varphi} \mathbf{I}$$

Sample simulation: 2D bubble column (tutorial)

Sample simulation: 2D bubble column (I.C.: U = 0)

Sample simulation: 3D bubble column (I.C.: U = 0)

Sample simulation: 3D bubble column (wrong B.C., I.C.: U = 0)

Time: 17.5

Improvements

- B.C. for pressure at inlet
 - "zeroGradient" to "fixedFluxPressure"
 - When "fixedFluxPressure" is used, the pressure gradient is adjusted by the predicted flux.
 - That is, the mass balance is conserved with the pressure gradient adjustment.

3D bubble column (correct b.c.)

(I.C.: U = 0)

3D bubble column (correct b.c.)

(I.C.: U = 0)

Cylinder bubble column

(I.C.: U = 0)

Summary

 Proper b.c. was found, and bubble column simulations were successfully conducted.

Future work

- Validation with experimental data
- Extension to the towing tank test case by Socolofsky et al.
- Estimation of required grid resolution